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NOTATION

f(x,z) Function representing the ship surface

F(x,y) Function representing the free surface

g Acceleration of gravity

gj Defined in £7., [9), and [I11

G Green's function

H Draft of the ship

k g/V,

L Length of the ship

t Intersection of the plane C = 0 and n = f(•,C)

n Normal vector on the surface into the flow

p Pressure

qj Defined in £8), [£10, and £12)

R Wave resistance

SF Free si-rface

S Ship surface

V Uniform velocity at infinity

O-x,y,z Right handed rectangular cartesian coordInatis
as shown in Figure 1

S-- (9 - xj) cos e + (n - yi) sine

Fictitious friction force

£ Small parameter representing the beam length ratio
of a ship

, Transformed coordinate system
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Subscript
represents coefficients of eJ in the expansion

of the attached quantity

Superscript

represents the corresponding quantity in the

transformed space
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SUMMARY

The free surface condition of the surface wave is con-

sidered on the free surface itself instead of the mean free

surface, by the use of a coordinate transformation, together

with the scheme of a systematic expansion in a small parameter.

Thus a higher order ship wave theory is developed. The most

common practical case of a slender ship with an almost flat

bottom is especially treated in detail. The lowest order re-

sult is the same as that given by Michell's theory. The next

higher order potential and wave resistance are derived ex-

plicitly.
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INTRODUCTION

Since Kelvin (1887) found the solution for linear water

surface waves and Michell (1898) formulated the wave resistance

due to a thin surface ship advancing in an inviscid fluid, many

experimental and theoretical works on this subject have been

performed by various ship hydrodynamists. TL waves and the

wave resistance of many ships have been calcuited and compared

with experiments. The theory of minimum wave resistance has been

developed and waves from the bow, the stern and the shoulder of a

ship have been analyzed.

These theories are based on solutions of the Laplace equa-

tion with linearized boundary conditions on both the free sur-

face and the ship surface. The theories are mathematically ele-

gant and certainly very significant in the development of the

ship wave theory. However, the general agreement with experiment

has been relatively very poor (especially for practical ships),

as compared with other linear theories such as have been devel-

oped in aerodynamics and for cavity flows.

To improve this situation the development of higher order

wave theory has been suggested in terms oif a systematic expan-

sion In small parameters (Stoker, 1957). Sisov (1961) actually

formulated the second order wave resistance for a thin ship where

the beam-length rati. ' cc'nsidered to be a fundamental small pa-

rameter as in MicheiL.. theory. To improve the comparison be-

tween wave theory and experiment, the streamline tracing tech-

nique was recommended (Inul, 1957), and also a slender ship
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theory has been developed (Vossers, 1962; Tuck, 1963; Maruo,

1962; Joosen, 1964). Wehausen (1964) has also considered an ex-

act formulation of the ship wave problem and showed that for a

thin ship with small draft, the most important higher order ef-

fect can be represented by a line integral along the Intersec-

tion of the ship surface and the water surface.

Although no proof has been made for the convergence of the

expansion of the potential in power series of a small parameter

as in Sisov or Wehausen's work, this expansion scheme is common

in applied mathematics. (Lighthill, 1954, Wehausen, 1960,

Van Dyke, 1965). The usual expansion problems are made more dif-

ficult in the case of ship waves because of the unknown position

of the free surface boundary where it is necessary to apply the

free surface boundary condition. In addition, the free surface

is internally bounded by the ship surface whe.re the usual rigid

boundary condition must be applied.

To resolve the difficulty connected with the unknown free s:•r-

face position, here we first transform the coordinates such that

C = 0 always represents the free surface. Then, we apply the

scheme of an expansion in small parameters to all of the physi-

cal quantities; in this development, first the beam-length ratio

was assumed small and then, in addition, the draft-length rati,

was assumed small (i.e., the ship is thin and then slender).

After substituting the relevant series in our governing equation

and the boundary conditions, we equate all the same order terms

In each equation. Then the governing equation which Is the

Laplace equation in the physical space becomes, it- the transformed
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space, Laplace equations in the lower orders, and Poisson'G

equations in the higher orders. In each order, the problem is

a well defined linear boundary value problem whose solution is

available by the use of Green's theorem, with one well known

Green's function which is equivalent to a potential due to a

source under the linearized free surface. The higher order so-

lutions depend upon the lower order solutions. Therefore, we

first solve the lowest order problem, and use this solution for

the next higher order problem, and so on. Thus, the potential

and the wave resistance for both thin ships and slender ships

are formulated explicitly here in both the first and the next

higher order.

The lowest order solution is the same as Michell's solu-

tion whether the ship is thin or slender, as Wehausen showed.

The next higher order solution is relatively simple especially

for the case of fast slender ships. This is due to three ef-

fects: the effect from the line integral (earlier mentio,.ed)

which is due to tne free surface bounded internally by the ship;

the effect from the change of submergence due to the wa:e; ahd

the bottom effect. The second order solutions for the casez of

"Thin ships, and of slow and medium speed blender ships (oralra:'y

merchar.4 ships) are a lt1le more coplicated ýlnce the non-

linear effect c! free surface needs to be inclýded. Sirngiarl-

ties at thte bow and stern, especially at the intersection w161%

t free ru8-'ce are careful.,ly a9-nlyzed. Fcr sziplicity, r•.,

tr'In -or zlr' age Is cors.siered, although thes- effects car. be

added wi"tho t :oo much difficulty.



HYDRONAUTICS, Incorporated

-5-

SISOV'S HIG'HER ORDER WAVE THEORY

We c~onsider the right-handed rectangular coordinate

O-x,y,,z or O-x1,yl1,z1 and the surface ship y = f(1cpz) as In Fig-

ure 1, in a homogeneous, inviscid, irrotationalp and infinitely

deep fluid with a free surface. The flow at infitntiy Is corn-

sidered to be uniform with the velocity Up and there exists a

perturbation veloeity potential ep, which satisfies

and the proper boundary conditions on the free surface and th~e

ship surface, with VcP = 0 and zP = 0 at infinity. Then by Green'-

formula

1 ý(x (xi ,: j z) G~x (y I p, ZI x aS

where the subscript nlnd Icates a partial d~erivative In tne it -4

rection or the Inner normiR'l r.u t he flui-d at, the whole bo--ArJ--

ary intcluding- the f tree S %trace SW and the sh4 .:'

race S sIn Figure 1. 0 IS the Gro-en's f->.ýncAi-no which1 1z3

nonic everywhere Inr t'.,e fZý;L c'XCept?. ~tiA. ~ a .~,

w.-ere It has a slng-Aarltty likce
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1/ ((x-x )2 + (y-Y. )' + (z-z 1 ))

£31
and VG = 0 , and G = 0 at infinity

in z < 0

The bound.ry conditions for cp on the free surface z = F(x,y)

are: the kinematic condition

(V-cP) F x -C pyF +c +p = 0 [4a]

and the dynamic condition

F(xy) 1- + 2 2) = 0 [4b]F~~)-g •x + 7gC (x 4ýy 41z

The boundary condition on the ship surface y = f(x,z) iL

the kinematic condition

(V -CPx )f + P - C f = C
[ 52

or Cp -nV= 0

For convenience we do not consider here any trim or sinkage of

the ship. We consider a thin ship symmetric with respect to the

v = 0 plane, with small slopes to the y = 0 plane, and a small

valtue of the half beam-length ratio, c; and assume the series,
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cp(xyze) - £Cp (xyz) + acep (x,y,z) + --

F(x,y,) = CF, (x,y) + C'Fa (x,y) + --

f(x,z) = Cf1 (x,z) £6]

By substitution of [6) in [4a]., [4b], and [5), and using

Taylor's expansion, we obtain (see e.g. Sisov, 1961) comparing

the terms of ej

k cp = p(x,y) on SpF [7]koljz + Pxx PiF

(ki =g/v)
0

for the free surface condition

CPjy = qj(x,z)
[8]

CP 0 on 0; outside of S in the fluid)[y( pys

for the ship surface condition, where SpF and S Indicate thePF pys

projection of SF and Ss on z = 0 and y = 0 planes respective.ly,

p1 (x,y) = 0 £9)

q1 (x,Jz) = -VfLx Cio l
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p (x,y) 1 ix2 + ,,y + L Cpiz2 - CPX (1CgPiz + CP1 xx) l)V X 9z

q2 (Xiz) = (CPixfl)x+(Pi z f )z £12]

In general, pj(xy) and qj(x,z) for J a 2 are represented in

terms of known functions including the obtained lower order solu-

tions (epi ; i < j).

Sisov (1961) obtained two Green's functions for the free

surface singularities on z = 0 and for the ship surface singu-

larities on y = 0 respectively, both satisfying the first order

free surface condition [7] and [9] except at the singularities.

Thus, if we consider that the boundary conditions everywhere

on the z = 0 plane and the y = 0, z • 0 haif plane are given as

in £7] and [8], respectively, the combination of the two Green's

functions will lead us to the solution of Sisov (1961).

The problem, however, is that the free surface is only out-

side of the ship boundary and the actual submergence of the ship

depends upon the wave height. Thus, the boundary conditions on

SpF and Spy are not necessarily those given everywhere on the

z = 0 plane and on the half y = 0 (z : 0) plane. In addition,

in practice, our ships are not thin and the slope to tne x,z plane

is not everywhere small.
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To overcome these difficulties we will try another formu-

lation of the same problem with a different approach.

COORDINATES DEFORMATION AND FORMULATION OF PROBLEM

We consider a transformation of the (x,y,z) coordinates

to the (•,rC) coordinates by

Y = [13]

z = C + F(x,y) J
Thus, • = 0 represents the free surface z = F(x,y). Of course,

at the beginning, we do not know the wave height F(x,y). Our

governing equations and the boundary conditions [1], [43 and £5]

can be represented in terms of the 9,n,C coordinates through

substitution of

cp(x, y,z) = cp ,n, + F(xy)] *

x - - x

CP =CP -P 2pF -ep*F + CP* F

S-p F [ 14]
1y Y

CP *P * F cp*F + P*Fy
yy Inl rgy C yy c

CP =cp*
2: 

C *
CP = p -c

•z • u
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in [i, [43, and £5). Now if we use the series [6) in the
transformed space

k CP* + cp* - Pg (gr* ) on S* [151
o JC j F

* on * (=,q) on s*
ill j s

where S * and S* indicate the corresponding surfaces of S and
F s F

Ss in the transformed space.

d =0
1

p 0 16)

q*=-Vf*

f*(9,c) S f*[x,z - F(x,y)] S f(x,z)

F(9 T)- F(x,y) Vi £ 217)
9 x -2g x + + [7

F1 (TI) = v cp* on 0
g it o
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•(a2C F + ** F + CP*C (Flxx +F1= lx + •1 ly 1 lyy)

, ,2 * + L ,p*2 + (ig*CF+x +CP*Fql C h18a]

Ia fl + +Pl l + Vf*F 1 x +cp*C *

V(C 1 2q •+ C0 2 + 1 p 12 . V)
F2 (x,y) = 2 i ly g 2 g lx

1 ,C *+ + l18b]2g (~l + nl•

d P*, p for J k 2 are represented in terms of known func-

tions including the obtained lower order solutions, (cp* ; i < J1.
i

We drop the superscript * except in the case of confusion.

For a general ship which has a small draft-length ratio as

well as a small beam-length ratio, the boundary condition cor-

responding to [8) and the order analysis needs to be dealt with

carefully. The exact boundary condition on the ship surface Ir.

x,y,z coordinates is

Vf
xCPon on S

l+f 
2 +f 2

l x z
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By transformation to the , coordinates

+ Ip[? {PFy F x(~cpf' cp f C) -Vf~ +Vf F} on Si+ (f sfF) YX

C 203

SOLUTION FOR EACH ORDER POTENTIAL

The solution for each j can be expressed using Green's

formula in the transformed space,

S• (xiyj , zj) G (xi,•z Y1 , ,i

S*

1 -ff G0v cýjr £T2134r ff
D*

where the Green's function G satisfiesx

Gc + koG 0 on 0=0

C 22)

G =0 on 1=C'

fl •• • •• • • m
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in addition to the usual properties previously mentioned in [33.

Such a Green's function G(xi,y 1 ,zi ;9,,C•) is wpll known to

represent the potential due to a poi;rt source located at

(x 1 3yl,z 1 ), (see e.g., Lunde, 1952).

G(xj ,n z,z ;9,71,C -

7r 40 -kIC+zj+ ikw
ko 0 sec2 e e
--- Re .dkde

T I k-k sec 28-i4 sece
-11T 0

r/2 -k sec2 8 Ij+z,1]

= r. - + 4k e secesin(k wsec 2 e)de

-ir/2+6

r/2+5 ,k-m k sec *8si n(mlC +z , I -mcos( WL +-"zI)

_ 2f defdm e o

k a sec'G + rm
0-r/2+5 0

C 23)

where

ra- (C-xj' ) (n- ) + (Cz )'

r ' = (9-xI) + (+i-y,)' + (C + z)

b = arctan TIx1

u = (9-xj ) cosO + (it-ny ) sine

S= fictitious friction force which is put to zero after
integration.
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G (xi,yi,O;Cii,C) represents the potential due to a Kelvin'sxl

source or a pressure point on the free surface. Using the con-

ditions [22] for Green's function and the boundary conditions

for q , we obtain

CPG - Cj G dS = - qjGz,- Gqjz' dxldy1

5* S*
F F

1 G 1 Cp G + l P*G dxjdy1
k ax, 3Jx1  jJx Pck 3

0 0

F

C _G - CjxG dy 1 + p*G dcdy: [?3*"
k~~ 0 1X 1  Jx1 k0

F

where L represents the intersection of S* and Ss. Therefore we
F

can write,

Vp= "pE C' J G G dS

3j \1 Jv
S*

2 L; G d f..

(P G - GG • x .•"
0 (7X dX ,"0 0

F

Gd d d Ti
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Now we may consider a Taylor's expansion of the Green's

function at n = O,

G(xi ,Cf. ,z, ;9,nC) - G(xi ,Ozs ;9,s,7) + f +2 yl y1

-G f +0 -G f
G (xI ,cf 1 ,z 1 ;go, , C) = X1, X1+ y- Z1 z [253

S•l f'+f a

+ fxl 
z1

M Cf lyy1 (xlO,z1 ;{,r,{) + 0(ca),etc.

Since we do not know S* a priori we consider the sequence
S

of ship surfaces which converges to 3*' or
s

S*, SIs --- S*. [26)
08 s

where S* represents the ship surface without any wave. Thus
Os

for each j we can have a sequence of solutions which may even-

tually have the domain of integration S*. The problem for the
Ossfirst order potential cs on S•o Is exactly the same as the first

order problem In the case of Sisovis theory.
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SLENDER SHIPS WITH ALMOST FLAT BOTTOM

When we consider that the draft of the ship is of the same

order as the beam in [243, the draftwise integration of the in-

tegrand 0(d3 ) becomes o(cJ+l). Thus, in £24), the lowest order

of ( is O(W') on and outside of the ship. If the ship has al-

most a flat bottom, tp is O(c) only near the ship sides (from

C 20) ).

With all these considerations including Equations [24) -

[26], if we collect the coefficients of the same order ej from

[243 we can have tj for each J. Thus the lowest order solution

is

CP =C y-fjQjG(xj 1 OcvzI ;xjpyyz) Jzd~iX: (273

300

where H = CHI and L indicates t;ae draft and the length of the

srlp respectively.

The next higher order sotLAion would be

( Caq +C' IL ff- Ix, (xi P,z )GbxI ,QOzl ;x,,ysz-Fi (x,y)1jiz_. x,

S!F

""( fX (x,' -H), (xj. of-H " p- x 1  ,
0

X. 
dx aO~ O2"
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The first term of the right hand side in [282 is different from

[27] only in the domain of integration. Thus, the influence of

the change of the submerged ship surface due to the wave ap-

pears in the change of ftx(x,Z) on S, into f 1 C(,,C) on Sfs

which is bounded by a straight plane C = O at the exact free

surface and the wavy ship bottom in the C,n,C space. If the

ship is wall sided, the only influence is from the vicinity cf

the bottom but not from the free surface in Sfs.

The second term in the right hand side of 0283 is the fiat

bottom effect. Here the Taylor expansion of (P which is symmetric

with respect to 1 = 0 is used. It represents a distribution of

vertical doublets with strength proportional to f, 2 .%

The third integral in the right hand side of £283 is the

line integral along the line of intersection between the snip

surface and the free surface. This indicates the line distriL,-

tion of singularities o.n the free surface, and will be inve•:ot-

gated further in the following sectlo.. This 1s partIc,;larly

important becap.;se even for a thin ship with deep draft, v wIi

be of the same ord',- as tne ca;ze of the small draft when the

ship speed is low.

The wave heIfght I1 0(€ ), anj from. 0173

FS Y- -IzX X-j

s .fficlently apart frc!7 the zqi-ra.er h. O. 0 .e Z =rfac.,,

it may be writte.
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F (x,f1 ) = 2x V (fax ,fl0) - [29b]

except rear the bow and the stern.

THE LINE INTEGRAL ON THE FREE SURFACE

The third integral in the right hand side of Equation [28]

L

f - k 2 (x , fl,0j)Gxj (Xi .9fj .OMj,{)- 02 X1G) L- dxj [30a]
k= dxj

0

can he interpreted as a potential due to the distribution of

doublets and sources on a line n = f1 (g,O) whose strengths are

proportional to CP2 flx 1 1/k and CP2x, flx respectively. It is

well known that a doublet distribution on the free surface is

the same as a pressure distribution on the free surface (Wehausen,

1959; Ursell, 1960). Therefore a distribution of sources on

tne free surface can also be interpreted in terms of a corres-

ponding distribution of pressure on tne free surface. For ex-

ample, we consider a smooth distribution of pressure p(ý,r)) on

a certain domain D on the free surface • = 0 of an otherwise

uniformv flow, and p = 0 on the boundary of D. Then

P - g ffrG dxj dy1 4r Pg x!

D
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Namely, the potential anywhere in the fluid can be expressed

either by a doublet distribution on • = 0 with strength pro-

portional to p(ý,rn) or a source distribution orn = 0 with

strength proportional to p,(ý,rI). Singularities on the free

surface need special attention because it is known that when

a pressure point or a point doublet is located on a free sur-

face, the flow behavior is singular not only at the point it-

self but also on its path line and the corresponding wave

resistance blows up (Lamb, 1932; Ursell, 1960). The same kind

of singular behavior takes place for a point source on the free

surface and the corresponding wave resistance becomes also in-

finity (Yim, 1966).

By an integration of [30a] by parts

LI I
-I : 7 2 fix G (xi , f, ,o0, TI, ,C )

0 X =0

0

neglecting nigher order terms. The first term of the right

hand side in [30b] indicates the potential due to a point source

located at (x ,fL,0) on the free surface. This would induce the

singular behavior mentioned before unless fix, = 0 at x, = 0

and xi = L. Therefore, in this report we will consider the ship

surface y = f(x,z) which is sufficiently smooth in -c < x < co
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near the free surface. In an engineering approximation of the

line integral for the lower orders, the free surface water-

line of a ship of finite entrance angle may be approximated by

a cusped smooth waterline sufficiently close to the original

one, since there can never exist such singular phenomena in the

attual case of real fluid. At present, no meaningful mathe-

matical limit of the wave resistance or the wave height due to

either a point source or a point doublet on the free surface is

available. This is discussed more fully later in the section

entitled Singularities at the Bow and Stern.

WAVE RESISTANCE

The wave resistance R can be calculated by the integration

of pressure p from the Bernoulli equation,

p = P ~VP - zg - i (C + CPy 2+ CP 2)3 [31](VP x 2 x y z

over the wetted ship surface,

fR p x dS

i + fX2+ fZ2

S

L F(x,z)

=f f 2 p Vcpx 7 -1(Cp 2 + Cp 2+Cp )j f dx dz £21

0 -H
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If we put

R = R2H2 + c pa + E' R + c' R5 + L33]

the lowest order wave resistance for a thin ship will be

Lo
=ff 2pVcplx flx dx dz [34]

o -H

since
L

flx dx = 0

0

This leads to the Michell's wave resistance formula. The lowest

order wave resistance due to a slender ship is

R4 = 2Pvax- f V2fx flxdx dz [35]

o -H1

in which only the part due to regular waves will remain. Thus

this is also the same as the Michell's wave resistance.
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The next higher order- wave resistance of a slender ship

with the almost flat bottom is

L o L F2 (x,z)

Hs = 2ff pVCP3Xflxdx dz + 2ff pVcp2 xfxdx dz

0 -H, 00

fLF 2 (x, Y)

- 2J',zg + V2 fjx2 flxdx dz [36]

0 0

where CP2 , cp3 , and F2 are given in [27), [28), and [29b]

respectively. If we consider that fjxis almost independent of

z near the free surface, the last integral will become

f (F2 g + V2 fjx2 F; fxdx

0

From [28], [35] and [36), we can write
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lfS* S*

opy S

k x(0 x.,0 )fLXLX 2rP2 (X ) flX1 i j
k0

0

sic-ce f.x 0 on tno bott~on cm., in X.&gratOlet over -~~r r

Sorr'14te-A. However. in ac~ua1 calcuiafl .1t miaY L~t~

»sldei~he frr~.~ccli!slduration of thetOC-h cit

e L.,,. 1. a t e *..r'.e -,a ~c~ atL1.on o f 11o( ai a I z ., r ua b~ ,ý, u a,-,3,, .If ýo:

.--i-rthne qave reu-'Istar~ce due 1to a s uI~~ is:t:

i c, w a- a 11 v stvremn t oe coii c Vr o,,. fio I

r'~ !.. , I zro ( see eg. L,.-e J(,7 si:~r
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we consider the effect of c2x on the line source distribution

on the free surface

-2pf ' 2X(xoo) (% (x,o,o) fxx + cpx(Xoo.)f, xdxk
0

0

2PL
=1 F. F g + _L V2 fj x2 -- fj xx + V F2 + 1-• fj x 2 flx dx

£38)

If we add £38) in £37) the effect of the local disturbance

due to the surface line integral is eliminated within O(e6 ),
and subtracting £38] from the last integral of £37) we obtain,

"r•/2
4p fjc2Ci + ±12) sec'e db

- 2jc' (CoCb + SoSb) ec 5 e de

0

S 2(COCF S S.) se 3e del

o F

+4 fL((c 11 X f, fXj, 2 .. ~S~ Fa v 2

0 
+

-. 2 0

0 ... 1 
L "
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where

C0 ff dx dzVkfix e k (k0 xsec8)
So0 S IsinJ

opys

C} =f f dgdCVkof 1 Ce k0Cseee cos (ko sece)

SJ Isin

lp'ns

Cb} L -k Hsecae Cos

Sf (x ,e-H ) (x{, ,} - e (k xsece )dx

CF c os
=f (x,0,O)fx+ 2y+ xfi2 (k xsece)dx

SF o sin t

Thus the higher order wave resistance of slender ships

0(0 5 ) is from the change of the ship submergence due to the

wave, the bottom effect, and the line integral due to the free

surface bounded internally by the ship surface. These higher

order effects are functions of the lowest order wave height tnd

the lowest order potential, which are zero at infinity.
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ORDER ANALYSIS AND DEPENDENCE ON k0

The selection of terms in each higher order for thin ships

and slender ships in the above analysis has been strictly for-

mal under the assumptions that series expansions [63 converge

for any small C, and all the variables behave properly. How-

ever this analysis would be incomplete if we did not consider

the actual situation which is highly dependent on the Green's

function £23) and the parameter k . In practice, for ordinary0

merchant ships (low and medium speed ships) and fast ships, the

magnitude of the following parameters, viz, Froude number

F = I/VjT , k L - k,, beam-length ratio, and draft-length
r 0 0

ratio are as shown in Table 1.

TABLE 1

Magnitude of Ship Parameters

Ordinary
Merchant ShIps Fast Ships

Fr 0.33 - 0.18 0.33 - 1.5

iik L li/• 0.11 - 0.033 0.11 - 2.20

k 0L i 9 -- 30 9 0., 5

Half-Beam Length Ratio 0.08 - 0.05 0.05 - 0.03

Draft-Lengtr. Ratio 0.07 - 0.014 0.07 - 0.0



HYDFONAUTICS, Incorporated

-27-

Thus, when we consider physical quantities, non-dimensionalized

with respect to L and V, it is easy to see that k, as a factor

to a term in our analysis affects the order of magnitude of

the term in the case of ordinary merchant ships since it is

0(I/c). On the other hand, for fast ships k, may be considered

as of O(1).

As for the Green's function, we may separately estimate

t-e magnitudes of the local disturbance and the regular part

from the following simple ship. Namely, when we consider a

wedge ship whose waterline slope is

=a= 0(c) in 0 < x < cnd

f x(X,Z) = 0 c < x < I - c 0 <-z < d

t=-a0 1l-c< x< 1

the regular part of Tx on y = 0, 0 < x < 1 - Is

k=e  l-e str(.:xsece) de
x~reg I

0

11.12 •:. x

f In (kxsece) e =- -J (t)

0
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which is 0(l) for all k1x,

' 2 m (k,~ z -k dt

0

Since, for fast ships, kd = 0(c), we o tan 1 - ek d = 0(C) in

this case. Therefore we can wl Itn

= 0(C) for 'ow and medium speeds

x, reg

0(C3 ) for a.igh speeds

Thr local distrbance on the friee surface iz known to be cf tne

same order rear trze booy as the regular wave although Lt decays

very raptdly 1n -.e far field. It is evident from the expression

for * that the zkrlvatlve with respect tu any coordinate nc.n-

almensLr, alized by L increases tte factor k- while the :Wegra-

ILi ,n redu;ý- the factcr.

Fron tie first twc eren .-f %Greer s f-.nctkot £'31.

--- ao -L-- , ;;.how :. -ffct;., . "hO -•a.
;• O r, ra t

f f ' f

W.• •x are z••..)"a ne ip. a' zzý ao ay z••,
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that the continuous variatior. of the waterline slope does not

affect the order' of magnitude of the physlcl variables since

the influence on the physical quantities from the suddcn change

of the slope at the bow and stern domitnates the other terms for

ordinary merchant ships and is of the same order as the otter

terms in the case of faCt ships.

From the boundary condition, we know that V ZIs of the same

order as rx xk 1 on the free surface and is equal to zero on th•.

ship's flat bottom. We also know, from the boundary con.JIitI:.

on the ship surface, that qy 0 near the shlp sides.

Thus we may tabulate the magnitudes of some physiacal q i"-

titles near the ship surface, except: wit.In a distance V2 from

the bow and stern as shown in Table 2.

TABLE 2

Order of Marnitudes of Some Physical, Quantlties

Ordinary
Mercnant Snl; Fast Ships

Ii iO... )

Ic IC log C) o(cl log t)

Wave Height 0 A•C _(___)_______)

V 10w. AP.
xx yy________

___C 
2

YxZ
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Therefore the higher order potential [28] and wave re--

sistance [39] in the case of slender ships are only valid for

fast ships. For slender ships at low Froude numbers, namely

for ordinary merchant ships, the higher order potentials are

rather the same as for, the case of thin ships, shown in [241.

The lowest order non--dimensional wave resistance for or-

dinary merchant ships is the same as that givei in Equation [34],
but the magnitude should be listed as O(W4 ), as in the case of

fast ships, because the double integral in Equation [34] brings

out the factor I/k12 which is O(C2). The higher order wave re-

sistance from ordinary merchant ships can be obtained from [32].

This will include not only the effects needed for the fast ships

in [39] but also the other effects due to the nonlinear terms

of the pressure equation [31] viz -1/2(CpIx 2 + Thz 2 ) which is

neglected Jn [39], as well a.: additional terms in CP2x shown in
£2h]. Essentially the expression for the higher order wave re-

sistance of ordinary merchant ships will be the same as for the

case of thin snrips. However if k, Is sufficiently large such-ki H =-kjH = .12
that e = 0(C), (e.g., k1= 30, H = 0.07, then e = 0.122)

then the bottorn effect and the effect due to the change of the

wetted surface of the ship in [24] will become one order hig.er.

When we use The raylor series expansion of Green's func-

tl)n [25], we have to notice the parameter kj~f 1 where the factor

k1 uomes in because of a differentiation of Green's function

wi.vh re,.•peot to y. The parameter k16 varies in the range of

0. f5 - 2.4 for ordirary merchant ships. Thus, in thLs case,

t':e eonver'ger~co of [25] is unreliable In a certain part of fL,
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and the accuracy of the first order theory (Michell's theory) ap-

pears to be grossly affected and the convergence of the higher

or'der theory may be slow. Nevertheless, the situation is not

that serious due to the fact tihat klcf1 in [25] is a function

of x and z which is zero at x = 0 and x = 1, and to the prin-

cIple that the potential is dominantly influenced by the entrance

angle for low Froude numbers.

STNGULARITIES AT THE BOW AND STERN

When the waterline slopes at the bow and the stern change

suddenly, Vjz has a logarithmic singularity at the origin while

cplx:and cply are finite there. This means that the slope of the

free surface F and F at the origin is infinity. In addition
x y

px and the higher order derivatives are singular along the bow

and the stern. Thus the present analysis cannot hold in the im-

mediate neighborhood of the bow and stern. However the princi-

pal effects of this singularity under the free surface is the

same as in the flow about a thin wing in an infinite medium with-

out a free surface.

This fact also indicates thaat the singular behavior of the

line integral £30az due to the point singularity at the origin

discussed earlier cannot be analyzed by means of this linear

theory. In fact if we consider the line integral in [23*] or

[30a], in the physical space then we have
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(T2rG(Ip2 - cp~xG) dy-
0

2 f (1 Gx, - I• xG) _ddsf" d s

0

where s represents the length of the line t from the bow to each

point on t, and tj represents the length of t from the bow to

the stern of the ship. Integrating by parts we obtain

2 (C2G o) df1. 2f God C2 d f , +df2 , d fl dI - k ds-o xd +- sx
s=O 0

where

G- fG ds

since F = F - • and therefore dfl 0 at s = 0 and s - .
x y ds

Hence

2 f d dff
G iCP2 - + CP2 Gdfl- ds

k d0 XTds J~ A ds
00
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-¶n this expression any effect from a point source or a point

doublet on the free surface is no longer included.

CONCLUDING REMARKS

In the first order ship theory, whether we start to satisfy

the boundary condition on the free surface itself or on the mean

free surface does not make any difference in the result. Like-

wise, whether the free surface is considered to be internally

bounded by the ship waterline at the free surface or not does

not affect the result of linear theory. However when we develop

a higher order theory, it seems necessary to consider these two

items very carefully. The application of the free surface con-

dition on the mean free surface cannot lead to the proper treat-

ment of the influence of the change of ship wetted surface

caused by surface waves. This difficulty has been resolved by

distorting the coordinates. Furthermore the requirement that

the free surface be internally bounded by the ship waterline at

the free surface makes a large difference in the result obtained.

The aforementioned influences appear in the second and higher

order terms, and are more important than the usually considered

nonlinear effect of the free surface boundary condition which

comes in only to the third and higher order terms in the case of

fast slender ships, and to the second and the higher order terms

in the case of thin ships and common speed slender ships.

The higher order analysis for common speed slender ships

(ordinary merchant ships) is rather the same as that for thin

ships, and the equations for the second order wave height and
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for the second order wave resistance are a little more compli-

cated than those for fast slender ships.

Essentially, the higher order wave theory considered here,

is based on the assumption of the regular or asymptotic con-

vergence of the series' expansion of physical quantities. In

this respect any higher order terms can be obtained from the

present analysis. However, in that case, unless we consider

the viscosity and the surface tension, the theory higher than

the second order would be meaningless.

The numerical computation of the higher order wave form

or wave resistance due to a slender ship is not too complicated

in this age of high speed computers. It would be extremely in-

teresting to see the numerical results even for the case of

individual high order influences such as the line integral ef-

fect, the bottom effect, and others.
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